Product Description

                  OEM/ODM Manufacturer Plastic Injection Mold/Molding Part for Small Molded Parts

       Our processing has a variety of processing, such as lathes, milling, grinding, boring, drilling, cutting,
       etc., to provide you with a multi-faceted service.           
 

Product range Producr design,mold design, mold making and produce plastic parts
Processing Craft Mold fabrication, Injection etc;
Material ABS,BMC, SMC, AS,PVC,Nylon(PA),PP,PC,PE,POM,PS,HDPE,TPE,TPU etc
Surface finish Polishing finish,Texture Finish,Glossy Finish,Electroplating,Painting,Slik print,Rubber Painting etc
Color RAL/PANTONE color
Mold Standard DME,LKM,FUTA,HASCO etc.
Mould Base as per customer’s requirement
Tolerance 0.01~0.1mm
File Format Solidworks,Pro/Engineer,Auto CAD,PDF,JPG
Quality Control Quality Control
Inspection IQC, IPQC,FQC,QA
Application All kinds of plastic injection parts being used in a variety of industrial application

Item Description
1.Mould  material P20,718H,45#,STAVAX ESR S136,H13,2316,2083,2344
2.Hardness of  steel vacuum quenching  ,nitride,HRC41-47, HRC46-50,HRC60
3.Inserts / Slider steel H13 (DIN.1.2344),tempered with HRC46-50
4.Mould spare parts H13 (Din 1.2344),tempered with HRC40-45,nitrited with HRC60-62
5.Mould base LKM,HASCO
6.Mould cavity Single / Multi
7.Runner system Hot / Cold
8.CAD centre for data formats IGES,X_T,STP & DWG,etc
9.Plastic material ABS,PC,PE,PP,PS.
10.Mould life 8
11.Delivery time 4-8 weeks
12.Terms of payment T/T, Paypal, Western Union and so on

          Our Services
          1.Product Design,Structural Optimization,Process Optimization.
          2.Mold Making,Plastic Molding Parts,Casting Parts,Machining Part.
          3.Manage Project,Control The Delivery and Quality of Products.
          4.Arranging the Transportation,Customs Clearance and other Matters for You.

       Our processing has a variety of processing, such as lathes, milling, grinding, boring, drilling, cutting,
       etc., to provide you with a multi-faceted service.   

Rapid tooling
Fast and cost-effective process to create aluminum or steel injection molds for quick turn injection molding. Ideal for rapid prototyping needs or validating product concept for production.

Overmolding
Overmolding is a unique injection molding process that combines 2 or more components together. It is the best practice for the plastic manufacturing of multi-color and multi-layers products.

Insert molding
Insert molding is a custom injection molding process that encapsulates components in a plastic part. It is most commonly used for prototype injection molding designs with threads and holes.

Liquid Silicone Rubber injection molding
Liquid silicone rubber (LSR) is a flexible prototype injection molding process that produces elastic, durable parts. Get custom prototypes and production parts from 15 days.

 Advantages:
 1. Competitive price.
 2. Strict quality control system.
 3. Quick mold making and delivery.
 4. Advanced equipment, excellent R&D teams.
 5. Professional technicians and rich experienced workers.

In order to ensure the quality of the orders,our independent QC members to carry out strict inspection at each 
stage:
(1)Incoming material inspection
(2)Inspection of work-in-progress
(3)Finished product inspection       
(4)Random warehouse inspections

All of our operations are strictly compliant with ISO 9001: 2015 guidelines.
To benefit from our strong OEM/ODM capabilities and considerate services, contact us today. 
We will sincerely create and share success with all clients.

Quality First,Price Best,Service Foremost!
We assure you of our best services at all times!

       
If you are interested in any of our products, please send message to us through
below approach!

Material: PP
Application: Medical, Household, Electronics, Automotive, Agricultural
Certification: TS16949, RoHS, ISO
Item: Worm/Nylon Plastic Injection Worm/Transmission Gea
Technics: Plastic Injection
Part Type: Plastic Parts
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Injection molded partt

Designing Injection Molded Parts

Injection molded parts are designed to work together to form a whole. While the small plastic toys like Legos aren’t typically fabricated for assembly, these products still require precision measurements. For this reason, the designs of injection molded parts should be perfected for manufacturing. The designs should also minimize error potential.

Design considerations for injection molded parts

When designing injection molded parts, it’s essential to consider the wall thickness of the part. Ideally, the wall thickness is uniform across the entire part. This allows the entire mold cavity to fill without restriction, and reduces the risk of defects. Parts that don’t have uniform wall thickness will have high stresses at the boundary between two sections, increasing the risk of cracks, warping, and twisting. To avoid such stresses, designers can consider tapering or rounding the edges of the part to eliminate stress concentration.
The wall thickness of the injection molded part is important because it affects many key characteristics. Therefore, it is critical to take proper care in choosing the wall thickness to avoid costly delays caused by mold problems or mold modification. The nominal wall thickness should be determined based on the function and stress requirements of the part. Similarly, the minimum wall thickness should be calculated based on acceptable stress. Too thin a wall can result in air traps and excessive plastic pressure.
Injection molded parts that have sharp corners are a common cause of defects. Sharp corners create stress concentrations, poor flow patterns, and increased injection mold wear. To minimize these problems, designers should keep inside corners and outside corners at half the wall thickness. This will help minimize stress and ensure the integrity of the part.
Another important design consideration for injection molded parts is the thickness of the ribs. They should be at least two-thirds of the outer wall. Thicker ribs may result in sink marks on the outer surface. Undercuts also complicate the mold design and increase the cost of the part.
Tolerance variation is also an important consideration. It depends on materials, process control, and tool design. Tolerance variation varies from molder to molder, and designers should discuss critical tolerance requirements with molders. If the part has to be manufactured to a particular tolerance, designers should consider options for mold revisions to minimize the tolerance variance. Additionally, designers may need to intentionally design extra clearance. To compensate for such variation, the molder may remove some steel or modify the design. In some cases, interference can be solved by welding.
Design considerations for injection molded parts should be discussed with material science professionals early in the design process. This is critical because changes to the mold design can be costly. Therefore, achieving the best possible result is critical. By following design guidelines, manufacturers can avoid common defects. A uniform wall thickness is also important because non-uniform thickness can lead to warping the part as it cools.
Another important factor for injection molded parts is the flowability of the material in the mold cavity. The resin should be able to flow easily around rounded corners. For example, a molded part with a curved undercut will not eject properly from the mold if there’s no space between the two sides. For this reason, designers should consider the flowability of the molded material before deciding on a design.

Adding a runner system to an injection molding machine

Injection molded parttThere are two main types of runner systems: hot runner systems and cold runner systems. In a hot runner system, a runner nozzle delivers the molten plastic into the mold cavity. A cold runner system does not require the use of a nozzle and acts as a conduit for the molten plastic.
The design of a hot runner mold should balance the activity of plastic solution and mold cavities. Ideally, a mold with two cavities is better balanced than one with three. However, it is important to remember that a three-cavity mold requires a manifold balance of human activities.
Plastic mold runner systems are crucial for ensuring consistent fill rates and pressure. Whether you are producing single or multiple-cavity plastic parts, a runner system will keep your processes consistent. When choosing a runner system, make sure you have the right one for your application.
Hot runner systems can reduce cycle times by as much as 10 to 30 percent. They help improve quality control and minimize material waste by keeping the plastic molten throughout the molding process. Moreover, they help save on plastic raw materials and energy. These features make them ideal for large production lines.
A hot runner system can also help prevent overfilling a cavity. Make sure that the volume of the hot runner is equal to the volume of the mold cavity. Otherwise, the plastic solution will be trapped inside the hot runner for too long and decompose.
Hot runner systems come in many varieties. One type of hot runner system is called the sprue hot runner system. This system uses a mechanical valve to open and close a nozzle. This type of hot runner is more effective and efficient than a general-purpose hot runner. However, it is also more expensive.
In a three-plate mold, the runner system is positioned between the core and cavity plates. When the mold is opened, the runner system automatically separates from the molded part. This eliminates the need for manual labor, but increases the cost of tooling.
The runner system is important for producing parts that are both thin and thick. The runner should be narrow but large so as not to create voids and improve the overall performance of the final product. Runner systems are also important for reducing the amount of energy needed to form and regrind the material.
A hot runner system is one way to improve the speed and accuracy of plastic molding. It helps avoid problems with waste by reducing the amount of plastic wasted. Furthermore, a hot runner system also prevents expensive repairs. By adding a runner system to an injection molding system, you will ensure better quality and precision, and avoid unnecessary downtime and costly repairs.
Hot runner systems are ideal for high-volume productions. However, they require a higher level of maintenance. In addition, hot runner systems are difficult to clean and often leave waste material. Hidden runners may also be inconvenient to remove, especially when changing materials or colors. They can also lead to sticking issues if they are made from thermally sensitive materials.

Using a thermally isolated cold injection unit

Injection molded parttThermostatic control of temperature in an injection molding process can make a significant impact on part quality. High mold temperatures should be regulated by using a temperature-controlled cooling unit. These devices are equipped with pumping systems and internal heaters. The temperature of the injected plastic determines the plastic’s flow characteristics and shrinkage. Temperature also influences the surface finish, dimensional stability, and physical properties of the finished product.
A thermally isolated cold injection unit allows mold operators to mold parts at lower temperatures than a conventional injection molding machine. The injection mold itself is composed of two steel halves. The two halves are connected by a mechanical hinge. During injection molding, a small amount of plastic is forced into the mold cavity. The injected plastic is then allowed to cool into a solid state. The molded part then falls out of the mold halves. The injected part then enters a bin to be collected.
The heat/cool injection molding process can improve the aesthetics of molded parts significantly. The effects of this technique are particularly apparent with amorphous resins, which do not form a skin during the injection phase. The molded parts have a higher gloss than with conventional molding techniques.
This process requires less clamping force than conventional injection molding and offers more design freedom. It also increases process capacity and materials savings. The process control for this process is more complex, with variables such as the amount of melt injection, water pressure, and water injection delay time.
The angle of repose is another criterion. A low angle indicates that the pellets are free-flowing, while an angle above 45deg indicates that the pellets are not free-flowing. This is important when processing nylon resins.
Plastic injection molding has made huge advances in recent decades. Today, most injection molds fall into one of two types: hot runner and cold runner. Each has its advantages and disadvantages. Understanding how they differ will help you decide which method is right for you.
Injection molding is a highly effective manufacturing process that gives manufacturers a competitive edge over their competition. Using this process produces high-quality plastic and metal parts with minimal waste and a low cycle time. The process is also extremely accurate and produces products with the perfect blend of flexibility and strength.
China OEM OEM/ODM Manufacturer Plastic Injection Mold/Molding Part for Small Molded Parts   with Best Sales China OEM OEM/ODM Manufacturer Plastic Injection Mold/Molding Part for Small Molded Parts   with Best Sales
editor by CX 2023-05-11